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ABSTRACT: Recent challenges to fingerprint evidence have brought forward the need for peer-reviewed scientific publications to support the
evidential value assessment of fingerprint. This paper proposes some research directions to gather statistical knowledge of the within-source and
between-sources variability of configurations of three minutiæ on fingermarks and fingerprints. This paper proposes the use of the likelihood ratio
(LR) approach to assess the value of fingerprint evidence. The model explores the statistical contribution of configurations of three minutiae using
Tippett plots and related measures to assess the quality of the system. Features vectors used for statistical analysis have been obtained following a
preprocessing step based on Gabor filtering and image processing to extract minutia position, type, and direction. Spatial relationships have been
coded using Delaunay triangulation. The metric, used to assess similarity between two feature vectors is based on an Euclidean distance measure.
The within-source variability has been estimated using a sample of 216 fingerprints from four fingers (two donors). Between-sources variability
takes advantage of a database of 818 ulnar loops from randomly selected males. The results show that the data-driven approach adopted here is
robust. The magnitude of LRs obtained under the prosecution and defense propositions stresses upon the major evidential contribution that small
portions of fingermark, containing three minutiæ, can provide regardless of its position on the general pattern.
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Recent challenges of fingerprint evidence (1–6) combined with
recent cases of false identification (7–9) have strengthened the
need for statistical research to underpin the fingerprint identifica-
tion process. High priority has been given to such statistical re-
search by a recent FBI committee charged with the review of the
scientific basis for friction ridge skin comparisons as a means of
identification (10).

A review of past statistical research in the fingerprint area has been
recently published (11). Most of the research effort has been con-
centrated on level II features, namely minutia configurations. The
term ‘‘minutiæ’’ refers to major ridge path deviations, also known as
points of identification, or Galton details/characteristics. The two
basic forms generally considered are ridge endings and bifurcations.

The most extensive forensic published studies to date have been
carried out on a sample of around 1000 fingerprints from distinct
individuals (12–14). These studies on minutiæ provide valuable
knowledge, but they cannot yet be deployed for large-scale, case-
specific calculations. As highlighted by Stoney, (15) none of the
proposed models have been subjected to extended empirical val-
idation studies. Indeed, the studies undertaken up to this point in
time do not provide a robust tool for assessing the evidential value
associated with all configurations of features on all fingers and for
all general patterns. This is because:

� the previous models used do not fully capture the spatial rela-
tionship between minutiæ;

� the independence assumptions at the core of each model have
not been fully tested;

� the studies focused on the estimation of a match probability
with a weak account for tolerances due to distortion or clarity
of the marks, including connective ambiguities;

� the effect of other variables such as general pattern, finger
number, sex, or ethnic origin of the source has rarely been
addressed; and

� none of the proposed models have been subjected to an
extended empirical validation.

The present research is trying to address some of these limita-
tions through the development of a model that will:

� capture the spatial relationship between minutiæ by using
Delaunay triangulation;

� consider the variability of marks left by the same finger due to
distortion;

� not require any independence assumptions;
� explore the effect of positioning of the configuration on the

fingerprint surface and general pattern; and
� express the weight of evidence using a likelihood ratio (LR)

that weighs together both the within-finger variability and the
between-finger variability.

Our purpose is not to demonstrate the individuality of a com-
plete and well-reproduced fingerprint, but to assess the evidential
contribution of fingermarks that can be partial, distorted, and with
a poor signal/noise ratio. To this end, we propose to explore here
configurations of three minutiæ. A hypothetical case example will
be used to illustrate the results that have been obtained.

Case Example

A partial fingermark is recovered from a crime scene. This fin-
germark (hereinafter the mark) contains an area where a neigh-
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borhood of three minutiæ is clearly visible and partial information
from which the general pattern and the region where the three
minutiæ are can be inferred. A potential donor—Mr. X—has been
the focus of the investigation and his fingerprints have been taken.
One of Mr. X’s fingerprints (hereinafter the print) shows the same
general pattern as the fingermark, combined with three minutiæ of
the same type, similar direction, and similar spatial arrangement.

Concept of a Likelihood Ratio for Fingerprint Evidence

A likelihood ratio (LR) is a statistical measure that offers a
balanced presentation of the strength of the evidence (16). It is
especially suitable for assessing the contribution of forensic find-
ings (17,18). Stoney (19) proposed the use of an LR in his dis-
sertation that has recently been applied in the field of marks and
impressions (20–22). Formally, the LR is defined as follows:

LR ¼ PrðEjS; IÞ
PrðEj�S; IÞ

Where,

– E is the result of the comparison between the mark and the
designated print from Mr. X;

– S is the hypothesis that Mr. X’s designated finger has actually
left the mark;

– (SPECIALS WITH THE BAR ON TOP) is the hypothesis that
someone else, from a population of potential suspects, has left
the mark; and

– I is the relevant background information the case, such as
information on the selectioin of Mr. X and on the unknown
source of the mark.

of the comparison between the mark and the designated print

from Mr. X, S the Mr. X’s designated finger has actually left

the mark, �S the someone else, from a population of potential

FIG. 1—Flow chart of the preprocessing and feature extraction steps from
acquired fingerprint images to a set of feature vectors.

FIG. 2—(a) Acquired image, (b) binary image obtained after Gabor filter-
ing, (c) binary image manually corrected, and (d) corresponding skeleton.

FIG. 3—(a) Raw skeleton with the indication of spurs (circles) and ridge breaks (diamonds). (b) Spurs have been removed, ridge breaks are still indicated.
(c) Skeleton obtained after removal of both spurs and ridge breaks.
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suspects, has left the mark, I the relevant background infor-

mation on the case such as information on the selection of

Mr. X and on the unknown source of the mark.
In the area of fingerprint evidence interpretation, the impact of I

on the probabilities of the results is generally nonexistent. However,
for the sake of generality, it will be retained in our development.

E in the above equation can be decomposed into y, the obser-
vation made on the mark and x, the observations made on the
print. Hence, we obtain:

LR ¼ Prðx; yjS; IÞ
Prðx; yj�S; IÞ

S implies that the considered minutia configuration on the
mark not only comes from the suspect, but from a precisely
defined minutia configuration on one of his fingers (i.e., the
general pattern and the region of the suspect’s finger are
known). The following discussion is based on the aforemen-
tioned hypotheses. A change of hypotheses implies a different
analysis.

The aim of the project is to assess LRs for configurations of
three minutiæ. The numerator of the LR calls for an estimation of
the density of the within variability of the features (same finger),
whereas the denominator of the LR calls for an estimation of the

FIG. 4—Skeleton with indication of ridge endings (in red) and bifurcations
(in blue). FIG. 5—Delaunay triangulation superimposed on the original grayscale

image.
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FIG. 6—Illustration of the zones for, respectively, loops (a), whorls (b), and arches (c).
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density of the between variability of the features (different
fingers). These two assessments will be based on samples of
known origin.

To assess the quality of this LR-based system, we will use
Tippett plots (23–26). Tippett plots allow to compare the
general magnitude of the LRs that we can expect from our
methods under the two considered hypotheses of common source
and of different sources. They allow to assess the discriminative
power of the system and the rates of misleading evidence of the
system.

Preprocessing and Feature Extraction

Images acquired to investigate the numerator and denominator
of the LR have been processed (fully or partly) according to the
flow chart in Fig. 1.

The images acquired for within variability were resized to a 1:1
scale at 500 dpi, treated using Gabor filtering (27,28)—pro-
grammed in Matlabs—and skeletonized after a manual check
(and manual correction if needed) of the adequacy between the
binary image and the initial grayscale image. An example is pre-
sented in Fig. 2.

Minutiæ, coded including a distinction between ridge endings
and bifurcations, were automatically extracted from the skeletons
of the images, followed by a step of cleaning and healing to re-
move artifacts arising from the skeletonization step such as spurs
and broken ridges as shown in Figs. 3 and 4.

At this point, we obtained clean skeletons for both the within
and the between-variability images. Features of statistical interest
will be extracted from them taking advantage of Delaunay tri-
angulation applied on the extracted minutiæ (29,30). In Fig. 5, an
example of a fingerprint with the superposition of the triangulation
of minutiæ is presented.

Previous research has shown the importance of taking into ac-
count the positioning on the papillary surface to assess the stat-
istical significance of minutiæ (13). To investigate this, zones
have been defined in relation to singular points (i.e., core and delta
points). Core and delta points were extracted using the orientation
field of the ridges according to the method described in Cappelli et
al. (31), and general patterns and regions were defined using these
singular points. One core and two deltas define a whorl, and one
delta and one core define a loop. For whorls, the core, left and

right delta, and left and right periphery were defined. For loops,
only one delta, the core, and the left and right periphery are de-
fined. The delta and core regions are circular, their diameter being
half of the distance between the core and the delta. Right and left
regions for whorls are defined by an axis passing through the core
and the mean point of an axis between the two deltas, whereas for
loops left and right are defined with respect to the line that can be
drawn between the core and the delta. For arches, points of max-
imal curvature were used to establish a central axis and a left and a
right zone were defined. Figure 6 illustrates the definition of the
zones.

These defined zones allow the extraction of Delaunay
triangles within predefined zones as illustrated in Fig. 7 for a
whorl.

Using Delaunay triangulation, each fingerprint can be viewed as
a collection of triangles. Each triangle can be described by a fea-
ture vector defined as follows: for the print, the feature vector is
denoted x, and for the mark the feature vector is denoted y. Data
extracted for each minutia—numbered 1–3—of the triangle are
given between curly brackets.

x ¼ GPx;Rx;Rs; T2x;A2x; L2x�3xf g; T3x;A3x; L3x�1xf g½ �
y ¼ GPy;Ry; T1y;A1y; L1y�2y

� �
; T2y;A2y; L2y�3y

� �
;

�

T3y;A3y; L3y�1y

� �
�

where GP is the general pattern of the fingerprint (for this study
all fingerprints are right loops), R is the zone from which the tri-
angle originates (center, delta, right, and left periphery), T is the
type of the minutia considered; T1x is therefore the type of the first
minutia from the triangle originating on the print. T can take a value
of 1 for ridge ending and 2 for bifurcation, A is the direction (be-
tween 0 and 2p) of the minutia relative to the opposite side of the
triangle, A1x is the direction of the first minutia from the triangle
originating from the print, L is the length in pixels of the side of the
triangle, L1x� 2x linking minutia 1 and 2 of the triangle from the
print.

We rearranged the feature vector to separate the discrete quan-
tities (GP, R, T) from the continuous quantities (A, L) and we in-
troduced a summary variable Nt combining the three types (T)
giving the total count of ridge endings (Nt then takes four possible
values [0, 1, 2, 3]). Hence, for x and y, respectively, we obtain the
following feature vectors:

FIG. 7—(a) Skeleton with Delaunay triangulation on all minutiae; (b) the triangles in the delta zone; (c) the triangles in the core zone.
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x ¼ GPx;Rx;Ntx; A1x; L1x�2xf g; A2x; L2x�3xf g; A3x; L3x�1xf g½ �
xdiscrete ¼ GPx;Rx;Ntx½ �;
xcontinuous ¼ A1x; L1x�2xf g; A2x; L2x�3xf g; A3x; L3x�1xf g½ �

Hence x 5 [xdiscrete, xcontinuous] or for short x 5 [xd, xc]

y ¼ GPy;Ry;Nty; A1y; L1y�2y

� �
; A2y; L2y�3y

� �
; A3y; L3y�1y

� �� �

ydiscrete ¼ GPy;Ry;Nty

� �
; ycontinuous

¼ A1y; L1y�2y

� �
; A2y; L2y�3y

� �
; A3y; L3y�1y

� �� �

Hence, y 5 [ydiscrete, ycontinuous] or for short y 5 [yd, yc]

FIG. 8—Probability tree used to compute the denominator of LRd. Right loops (a), left loops (b), whorls (c), arches (d).
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Statistical Analysis

The purpose of the research is to assess LRs associated with
comparison between a three-minutia mark and a corresponding
arrangement on a print. Formally we can write:

LR ¼ pðx; yjS; IÞ
pðx; yjS; IÞ

¼ pðxd; yd; xc; ycjS; IÞ
pðxd; yd; xc; ycjS; IÞ

LR ¼ pðxc; ycjxd; yd; S; IÞ
pðxc; ycjxd; yd; �S; IÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LRcjd

pðxd; ydjS; IÞ
pðxd; ydj�S; IÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

LRd

¼ LRcjd � LRd

The LR is expressed as a product of two LRs. The second ratio,
LRd, is the weight of the discrete variables, whereas the first ratio,
LRc|d, is the weight of the continuous variable (conditional on the
discrete observations).

For LRd, the value of the numerator is set to 1 because it is
assumed that if two feature vectors are of the same source, there
are no doubts on the fact that they originate from the same region
of the same general pattern and that they code the same minutia
types. This numerator will be investigated further in future work
as there are some notable issues on the clarity of minutia types.
The value of the denominator of the second term is the probability
that two feature vectors originate from the same region of finger-
prints having the same general pattern and that they have the same
minutia-type combination. This probability is computed according
to the probability tree shown in Fig. 8. The frequencies for general
patterns are based on values compiled by the FBI for the National

Crime Information Center in 1993 (http://home.att.net/ � derma-
toglyphics/mfre/). Frequencies for the occurrence of the different
regions for each general pattern and for the occurrence of each of
the minutia-type combination for each region are based on the set
of fingerprints used for the between variability. The denominator
probability of being in a specific leaf of the tree is obtained by
multiplying the frequencies of the branches.

To compute LRc|d, an approach called the ‘‘data-driven’’ ap-
proach has been adopted. This approach is based on the two-by-
two comparisons of triangles for assessing both the numerator and
the denominator. A Euclidean distance d was used for the com-
parison of the continuous variables and serves as our joint de-
scriptor of xc and yc. To compute the Euclidean distance, the
variables were normalized dividing each value by the maximum
value taken by that feature, resulting in variables with values be-
tween 0 and 1. Owing to the conditional status LRc|d, distances
were computed between xc and yc only if the discrete variables xd

and yd corresponded. The distance is defined as follows:

dðxc; ycÞ ¼ D2A1 þ D2L1�2 þ D2A2 þ D2L2�3 þ D2A3 þ D2L3�1

where D2 is the squared difference between the corresponding
variables from x and y.

Hence, the LR of interest can be estimated by the ratio of the
densities of d obtained under two distinct states S and �S.

LRcjd ¼
pðdjxd; yd; S; IÞ
pðdjxd; yd; S; IÞ

These two densities have been estimated, for right loops fin-
gerprints, from feature vectors originating from a common source
(within variability) on the one hand, and from different sources on
the other (between variability). The estimation of LRc|d is the pur-
pose of the reminder of the paper. The within-variability density is
assessed from the pairwise cross comparisons of feature vectors
within their family set. The between-variability density is assessed
from the pairwise comparisons of the mark feature vector and the
feature vectors extracted for the between variability. Both dens-
ities have been computed using a kernel smoothing method (built-
in ksdensity function from Matlabs/Statistics toolboxs, The
Mathworks, Inc., Natick, MA). Details about the datasets and
the concept of family set are given in the next section.

FIG. 9—Images of the same finger under four different distortion states.

TABLE 1—Distribution of general patterns and ridge counts in the set of
fingerprints used to assess between-finger variability.

Description Number

Ulnar loops from right index finger, ridge count 3–6 217
Ulnar loops from right index finger, ridge count 12–16 104
Ulnar loops from right middle finger, ridge count 3–6 185
Ulnar loops from right middle finger, ridge count 12–16 180
Total for dataset 1 686

TABLE 2—RMED, RMEP, and LRs obtained for configurations of three minutiae for dataset 1.

RMED (%) RMEP (%)

S Is True �S Is True

LRc|d Minimum LRc|d Maximum LRc|d Minimum LRc|d Maximum

All zones 2.42 2.62 0.009 2.87 � 103 3.16 � 10� 7 6.53 � 101

Core zone 5.14 1.93 0.01 2.43 � 103 1.13 � 10� 7 4.00 � 102

Delta zone 2.44 3.19 0.025 3.42 � 103 3.19 � 10� 7 4.16 � 103

Left zone 2.32 0.66 0.01 2.57 � 103 1.30 � 10� 7 4.09 � 101

Right zone 1.21 2.85 0.057 3.35 � 103 2.93 � 10� 7 3.60 � 102

RMED, rate of misleading evidence in favor of the defense; RMEP, rate of misleading evidence in favor of the prosecution; LR, likelihood ratio.
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Acquisition of Data

We will consider separately data informing within finger vari-
ability for the numerator of the LR, from data informing the be-
tween variability for the denominator of the LR.

Within-Finger Variability

For the description of the within-finger variability of configur-
ations of 3 minutiæ, a dataset of 216 fingerprints from four fingers
(all right loops) has been obtained. The fingers used were the

middle finger and the thumb of two donors, one male and one
female, both donors being roughly of the same age (30s). An op-
tical acquisition method based on coaxial episcopy illumination
was used. For the acquisition of different images showing distor-
tion in several directions, the following method has been used.
The protocol requires that the donor moves his feet at nine fixed
positions, while keeping his finger on the same position on the
acquisition device. The closest position (of the nine) between the
feet and the acquisition device is of 20 cm. The nine positions of
the donor are contained in a square of a side length of 50 cm. The
finger is applied on the glass pane and the distortion depends on

TABLE 3—RMED, RMEP, and LRs obtained for configurations of three minutiae for dataset 2.

RMED (%) RMEP (%)

S Is True �S Is True

LRc|d Minimum LRc|d Maximum LRc|d Minimum LRc|d Maximum

All zones 3.27 3.24 0.01 7.65 � 103 1.94 � 10� 7 2.69 � 102

Core zone 3.74 2.43 0.006 1.99 � 103 5.61 � 10� 7 4.12 � 102

Delta zone 2.39 5.20 0.01 1.60 � 104 1.70 � 10� 6 1.12 � 102

Left zone 3.33 2.38 0.008 2.98 � 103 4.34 � 10� 7 1.03 � 103

Right zone 3.09 1.16 0.05 1.89 � 103 1.09 � 10� 6 1.45 � 103

RMED, rate of misleading evidence in favor of the defense; RMEP, rate of misleading evidence in favor of the prosecution; LR, likelihood ratio.

FIG. 10—Tippett plot of the likelihood ratios over all regions for index (a) and middle (b) fingers in dataset 1 and for thumbs in dataset 2 (c).
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the position of the donor. Image acquisition was performed using
a Fuji Finepix S2 Pros camera, using the maximal interpolated
resolution of 4256 � 2848 pixels. An example is given in Fig. 9.

The resulting resolution of the images is c. 2500 dpi, and they
have been acquired and stored in TIFF (Tagged Image File For-
mat). An image of this quality allows the estimation of within
variability due to distortion only. Uncertainty as to the type of
minutiæ is not taken into account at this stage.

Each image has been preprocessed according to the procedure
described in section 4. In addition, triangles were grouped into
family sets. A family set is a set of triangles coming from the same
finger and the same set of minutiæ. These families represent the
amount of distortion a given configuration can endure. Delaunay
triangulation is reproducible on fixed points, but as minutia pos-
itions in this setup are not constant (due to distortion), Delaunay
triangulation on different images may lead, for the same donor
finger, to different triangulation. In order to avoid this and to en-
sure reproducibility in the triangulation, triangles were manually
corrected and attributed, using the corresponding inked triangu-
lated fingerprint as a template. A maximum of 54 triangles can
constitute a family set (per prints acquired). However, due to the
fact that distortion may reduce the papillary information available,
the number of triangles per family set varies between 1
and 54.

Between-Finger Variability

Two datasets are available for the investigation of the between-
finger variability. The first—dataset 1—has been acquired during
a previous study (13); the second—dataset 2—has been acquired
during this research effort. At this stage, we decided to keep these
two datasets separate in order to investigate the effect of a change
of population on the LRs.

Fingerprints in dataset 1 are ulnar loops from right index and
middle fingers, as shown in Table 1. They originate from a popu-
lation of 686 randomly selected males registered within the Swiss
criminal justice fingerprint database.

Fingerprints in dataset 2 are ulnar loops from right thumb fingers.
They originate from a population of 132 randomly selected males
registered within the Swiss criminal justice fingerprint database.

The fingerprint images of dataset 1 had been previously digit-
ized (800 dpi, 8 bits depth) binarized, skeletonized, and manually
checked against the original grayscale image, in order to correct
all artifacts due to the automated binarization and thinning pro-
cesses. This processing scheme is fully described elsewhere (13).
The working set for this study is then composed of the corrected
skeletons re-sampled to 500 dpi. The feature vectors were ob-
tained using the procedure described, leading to feature vectors for
90,327 triangles.

FIG. 11—Tippett plot of the likelihood ratio in the core region for index (a) and middle (b) fingers in dataset 1 and for thumbs in dataset 2 (c).
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The images from dataset 2 were acquired in grayscale at a
resolution of 800 dpi and processed, for a total of 23,051 triangles.

Results

Our aim is to assess the efficiency of the system using Tippett
plots. The Tippett plots were constructed by resampling tech-
niques using the results of 2000 LRs for each hypothesis (4000
LRs in total). To compute LRc|d under S, two ‘‘matching’’ config-
urations (one considered to be the mark, one considered to be the
print) are randomly selected from the families of corresponding
triangles coming from the within-donor datasets. To compute the
LRc|d under �S, two ‘‘nonmatching’’ configurations are randomly
selected from the database made of the configurations constructed
from between-sources database. Tests were conducted to ensure
the robustness of Tippett plots when computed with a resampling
procedure of 2000 LRs under each hypothesis. The originating
region of minutia configurations was taken into account to assess
the change in expected LRs between core, delta, right, and left
periphery. The Tippett plot is a specific representation of the dis-
tribution of LRs obtained under both hypotheses. On the x-axis,
the log10(LRc|d) is given. On the y-axis, one minus the cumulative

distribution (from probability of 1 to 0) of the LRs is given. The
Tippett plot then gives one minus the cumulative distribution for,
respectively, the LRs computed under S (called LR true on the
Tippett plot) and the LRs computed under �S (called LR false on
the Tippett plot). These plots allow also to study and compare the
proportions of misleading evidence: the percentage of LRc|do1
when the prosecution proposition S is true and percentage of
LRc|d41 when the defense proposition �S is true. We define these
two rates of misleading results as follows:

Rate of misleading evidence in favor of the defense (RMED):
among all LRc|d computed under the prosecution proposition S,
proportion of LRc|d below 1. On the Tippett plots, this rate is
denoted LR trueo1.
Rate of misleading evidence in favor of the prosecution
(RMEP): among all LRc|d computed under the defense propos-
ition (�S), proportion of LRc|d above 1. On the Tippett plots, this
rate is denoted LR false41.

The results obtained for dataset 1 are summarized in Table 2,
and those for dataset 2 are summarized in Table 3.

The Tippett plots are given in Figs. 10–14.

FIG. 12—Tippett plot of the likelihood ratio in the delta region for index (a) and middle (b) fingers in dataset 1 and for thumbs in dataset 2 (c).
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In order to verify that for a given triangle the LRs computed are
stable to a change in database, a subset of the dataset acquired for
the description of within finger variability has been used as a basis
for comparison of the LR obtained for a given triangle. This subset
contains 219 triangles, which are reproduced a maximum of 36
times. This was done under the defense proposition, �S, as well as
under the prosecution proposition S.

As dataset 1 contains far more three-minutiæ configurations
coming from right loops than dataset 2, the triangles from the
training set have been subsampled to the same number (23,051-
triangles). The following figures illustrate these comparisons
(Figs. 15 and 16).

The results show that even though the LRs obtained are not
linearly correlated, particularly under the prosecution proposition,
their logarithms are (R2 5 0.974 and 5 0.945, respectively). This
means that these results correspond in magnitude between the two
databases used. Furthermore, no great influence of database size is
observed.

Discussion and Conclusion

The results show that the data-driven approach adopted here is
robust; the magnitude of LRs obtained under both propositions (S

and �S) stresses upon the major evidential contribution that small
portions of fingermark (three minutiæ) can provide regardless of
their position on the general pattern. The Tippett plots computed
for all regions together and separately for each of the different
zones show slight differences between them. The comparison be-
tween the two datasets through the rates of misleading evidence
does not suggest a problem in relation to a change in database.

Of course, focused on three minutiæ only, the present model
constitutes a ‘‘proof of concept’’ but it encapsulates important
features:

– the weight of evidence is expressed through a LR at the source
level that takes into account both within- and between-sample
variability;

– the model captures the type of minutiæ, their location, orien-
tation, and relative relationships;

– the computation of LR is heavily based on data both for the
numerator and denominator avoiding questionable distribution-
al or independence assumptions; and

– validation has been made through experiments by simulating
cases where sources were known. It allowed estimating two
decisive rates of misleading evidence (RMED and RMEP). As
the value 1 for the LR is used to distinguish the two rates

FIG. 13—Tippett plot of the likelihood ratio in the left periphery for index (a) and middle (b) fingers in dataset 1 and for thumbs in dataset 2 (c).
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FIG. 14—Tippett plot of the likelihood ratio in the right periphery for index (a) and middle (b) fingers in dataset 1 and for thumbs in dataset 2 (c).

FIG. 15—Comparison of results for a collection of triangles between
dataset 1 and dataset 2 under the defense proposition �S.

FIG. 16—Comparison of results for a collection of triangles between
dataset 1 and dataset 2 under the prosecution proposition S.
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(RMED and RMEP), by shifting this ‘‘threshold’’ we can adapt
a system with a predefined RMED or RMEP. As a policy, we
may want to minimize RMEP with the effect of increasing
RMED. Such a consideration will have to be taken into account
at the time we would deploy an operational system.

It should be emphasized that the LRs that are presented in this
work are directly correlated to the feature vectors used. Indeed,
these feature vectors are only one possible mathematical repre-
sentation of the anthropometric reality. Changes in the way fin-
gerprint features are extracted from fingerprints and encoded
may result in different LRs. The effect of such changes may be
studied by applying the above-described simulations, with the
same data sets, on the new model and by comparing the resulting
Tippett plots, RMED, and RMEP with the one presented in this
research.

Based on these qualities, we envisage expanding this model to
deal with more than three minutiæ and to study a larger collection
of friction ridge skin impressions.
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